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Abstract—In a commercial cloud, service providers (e.g.,
video streaming service provider) rent resources from cloud
vendors (e.g., Google Cloud Platform) and provide services to
cloud users, making a profit from the price gap. Cloud users
acquire services by forwarding their requests to corresponding
servers. In practice, as a common scenario, traffic dynamics
will cause server overload or load-unbalancing. Existing works
mainly deal with the problem by two methods: elastic resource
provisioning and request updating. Elastic resource provisioning
is a fast and agile solution but may cost too much since service
providers need to buy extra resources from cloud vendors.
Though request updating is a free solution, it will cause a
significant delay, resulting in a bad users’ QoS. In this paper, we
present a new scheme, called real-time request updating with
elastic resource provisioning (TRUST), to help service providers
pay less cost with users’ QoS guarantee in clouds. In addition,
we propose an efficient algorithm for TRUST with a bounded
approximation factor based on randomized rounding. Both
small-scale experiment results and large-scale simulation results
show the superior performance of our proposed algorithm
compared with state-of-the-art benchmarks.

Index Terms—Cloud Computing, Elasticity, Request Updating,
Resource Provisioning

I. INTRODUCTION

Driven by the rapid growth of the demand for flexible
and efficient computation power, cloud computing has gained
much attention from both industry and academia [1]. Com-
paring with building IT infrastructure, cloud computing lib-
erates us from cumbersome tasks (e.g., managing and main-
taining devices). Consequently, cloud computing has gained
enormous economic earnings in recent years thanks to its
convenience and efficiency, and an increasing number of en-
terprises/individuals are outsourcing their services/workloads
to clouds [2].

In practice, there are mainly three roles in clouds: cloud
vendors, service providers and cloud users [3]. Cloud vendors
(e.g., Amazon Web Services and Google Cloud Platform) are
responsible for building and maintaining physical servers.
They lease a certain amount of VMs/containers to each
service provider. Then, service providers can implement their
services like security [4], storage [5], auditing [6], and so on,
also called the Network Function (NF) instances. Cloud users
can purchase the services according to their requirements,
so their requests can be scheduled to the corresponding
NFs. For instance, a VPN service provider rents several
VMs from a cloud vendor to implement a VPN function.
Then, cloud users can buy the VPN service from the service

provider and acquire services by forwarding their traffic to
the corresponding VPNs.

In a large-scale multi-tenant cloud, it is evident that the
amount of traffic is tremendous and traffic dynamics is a
long-standing problem [2], causing load-unbalancing and
even overload among NFs, which will severely affect service
availability and execution efficiency [7]. Consequently, it will
decrease users’ QoS [8]. To deal with traffic dynamics in
clouds and ameliorate the QoS, request updating has been
widely adopted, which means transferring the requests to
another available NF. Existing works usually design the
request updating schemes for NF load-balancing [9] [10] or
minimizing the makespan [11] [12]. For example, the authors
in [9] present a distributed request scheduling mechanism so
as to achieve load balancing among servers in data centers
by fairly distributing the traffic from the edge switches. The
work [12] tries to find an optimal solution for less cloud
resource cost under the deadline constraint via the immune-
based particle swarm optimization algorithm [13].

Although plenty of works have designed reasonable re-
quest updating schemes to handle traffic dynamics, there exist
two fundamental disadvantages in request updating. Firstly,
the delay of updating requests may severely degrade users’
QoS [14]. Commercial clouds usually adopt the architecture
of centralized control [15] and the clouds are managed
by the controller. The update delay for requests updating
may become the system bottleneck [16], due to the limited
processing capacity of the controller. For instance, it takes
at least 0.5ms for the controller to update a flow entry on a
switch [17]. Assume that more than 80% of requests/flows
last less than 10s [18] and millions of requests are injected
into the cloud every minute [19]. The update delay may affect
a considerable number of requests. That is because during the
delay time-span, many requests have terminated and many
new requests have arrived [20]. Secondly, since NFs need to
record the states of processed requests, there exists request
state consistency issue while transferring requests. Request
updating will bring extra delay and overhead to maintain
the requests’ state consistency on NFs [21]. For example,
after request updating, if a user’s requests are scheduled to
an NF without maintaining the requests’ state, it will incur
request state inconsistency and wrong operations. Because of
these two disadvantages, request updating is hard to assure
users’ QoS in large-scale clouds, and alternative solutions as
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supplementary methods are urgently needed.
By enabling the virtualization technology, elastic resource

provisioning has become a new trend to deal with traffic
dynamics in clouds [22] [23] [24] [25] [26]. Elastic resource
provisioning means that the system can add or remove
resources (such as CPU cores, memory, VM or container
instances) to adapt to load variation in a real-time manner
[26]. In practice, the cloud vendors usually would offer
several suitable configuration types associated with fixed
resource combinations [23] and each NF will choose one of
the resource configuration types to serve requests from cloud
users. For instance, in Google Cloud Platform (GCP) [27],
the price for a virtual machine with 4 CPU cores and 15 GB
memory is $97 per month and the price for a VM with 8 CPU
cores and 30 GB memory is $197 per month. The previous
works about elastic resource provisioning mainly focus on
how to improve network performance [28], increase resource
capacity [29] or save the energy [30]. For instance, the
authors in [28] provide automatic deployment and proactive
scaling of multiple simultaneous web applications methods
to improve the infrastructure performance, which has been
deployed in Amazon Elastic Compute Cloud.

The idea of elastic resource provisioning holds an ex-
cellent promise of solving the problem of traffic dynam-
ics. Compared with request updating solutions, resizing a
VM/container only takes tens of milliseconds [23] [31] and
there is no need to worry about the problem of request
state consistency. Accordingly, users’ QoS can be guaran-
teed. However, it will increase the cost of service providers
since they should pay more to cloud vendors for the extra
resources. In contrast, with the request updating method,
service providers do not have to pay the extra money, but
users’ QoS may be affected, due to the update delay and the
requirement of request state consistency. Hence, we find the
two approaches can be complementary to each other to help
service providers pay less cost with users’ QoS guarantee.

In this paper, we propose real-time request updating with
elastic resource provisioning (TRUST) when facing traffic
dynamics. Specifically, since request updating would increase
the update delay and decrease users’ QoS, we try to finish
the updating operation under the time threshold T , which
will be determined by users’ QoS demand. For instance,
in a cellular communication network, the authors in [32]
show that when the delivery delay is below 150ms, the
quality of propagation can be still guaranteed. Meanwhile,
we try to minimize the infrastructure cost of purchasing
cloud resources. In a nutshell, TRUST can enlighten a way
that helps service providers to spend less money with users’
QoS guarantee. The main contributions of this paper can be
summarized as follows:

1) We comprehensively analyze the current methods to deal
with traffic dynamics in clouds and show the advantages
and weaknesses of request updating and elastic resource
provisioning.

2) We give the formulation of real-time request updating
with elastic resource provisioning (TRUST), which can
assure users’ QoS and save money for service providers.

To our best knowledge, this is the first work that takes
advantages of both elastic resource provisioning and
request updating to handle traffic dynamics.

3) We show the problem complexity of TRUST and present
a randomized rounding based algorithm. The perfor-
mance analysis shows that our algorithm can achieve
the optimal value with a high probability.

4) We conduct small-scale testbed experiments and large-
scale simulations using real-world topologies and
datasets to show that the proposed algorithm can achieve
superior performance compared with the state-of-the-art
solutions.

The rest of this paper is organized as follows. Section
II introduces the preliminaries of our work, including the
commercial cloud model, a motivating example and the prob-
lem formulation. Section III presents our proposed algorithm
based on randomized rounding. The simulation and testbed
evaluation results are presented in Section IV. We conclude
this paper in Section V.

II. PRELIMINARIES

A. Commercial Cloud Model

We first present the commercial cloud model. A typical
commercial cloud mainly consists of three parts: cloud ven-
dors, service providers and cloud users. Cloud vendors (1)
host a set of physical machines, (2) construct and maintain
the VMs/containers upon the physical servers, and (3) sell
or lease resources to service providers and users. Cloud
vendors set several configuration types of VMs/containers,
each associated with a certain amount of computing resources
(e.g., CPU or RAM). Of course, they will charge a reason-
able price for the resources service providers use. Service
providers will rent resources from cloud vendors such as a
VM with 4 core CPUs and 8G RAM to implement their
services, e.g., VPN and ELB, also called Network Function
(NF) instances. Service providers sell these services to cloud
users and process the requests from them. Service providers
also need to pay the infrastructure prices to cloud vendors,
making a profit from the price gap. Obviously, the service
providers all wish to spend less money on infrastructure costs
and provide services to users with high QoS guarantee.

We use S = {s1, s2, ...s|S|} to denote the set of phys-
ical servers maintained by cloud vendors, and each server
s comes with limited resources R(s). Here R(s) can be
expanded into a resource vector to represent different types of
resources on server s, such as CPU, RAM and bandwidth. Let
C = {c1, c2, ...c|C|} represent the set of configuration types,
and each configuration type c comes with resources usage
r(c), processing capacity p(c) and infrastructure cost m(c).
Note that, r(c) can also be expanded into a resource vector.
N = {n1, n2, ...n|N |} represents the set of NFs and Ns
denotes the set of NFs on the physical server s ∈ S. We use
Γ = {γ1, γ2, ...γ|Γ|} to denote the set of requests generated
by cloud users. Each request γ comes with a traffic size
of f(γ), which can be acquired by collecting flow statistics
information on the controller [33].
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Type Configuration Price Capacity

A
4 core CPU
15G RAM $97 50Gbps

B
8 core CPU
30G RAM $197 100Gbps

TABLE I: Configuration types and prices
according to Google Cloud Platform [27].
Configuration type A contains a 4 core CPU
and 15G RAM and is capable to handle
50Gbps requests. Configuration type B con-
tains a 8 core CPU and 30G RAM and is
capable to handle 100Gbps requests.

Method
NF Type NF Traffic (Gbps)

Money
Update

DelayNF1 NF2 NF3 NF1 NF2 NF3

Original A A A 65 56 27 $291 \

ERP B↑ B↑ A 65 56 27 $491 ≈ 0

RU A A A 50↓ 50↓ 48↑ $291 21

TRUST B↑ A A 65 50↓ 33↑ $391 6

TABLE II: Algorithm Comparison. ERP will upgrade the configuration of NF1

and NF2 to type B, which costs $491 and negligible update delay. RU needs to
update 1500/600 requests from NF1/NF2 to NF3, which costs 21 units update
delay and $291. TRUST will transfer 600 requests from NF2 to NF3, and upgrade
the configuration type of NF1. This costs $391 and 6 units update delay.

B. A Motivating Example

This section presents a motivating example to demonstrate
the advantages of TRUST compared with existing solutions.

As shown in Table I, we assume that cloud vendors
will provide two kinds of NF configuration types. A video
streaming service provider owns three NFs, denoted as NF1,
NF2 and NF3, all initialized as type A to provide high quality
online videos. NFs with type A are able to deal with 50
Gbps traffic load. Now the service provider is facing traffic
dynamics. The current traffic loads of three NFs are 65 Gbps,
56 Gbps and 27 Gbps, respectively, which means overload
on both NF1 and NF2. Suppose that every user is enjoying
the similar video streaming service and one request takes
10 Mbps traffic load on average. Then, we assume that
transferring 100 requests from one NF to another will cost
one unit time-span. To guarantee the users’ QoS, the service
provider needs to finish the updating process within 10 units.
Otherwise, the delay may upset the users. The performance
comparison of three algorithms is shown in Table II.

Existing works mainly deal with traffic dynamics by two
methods: Elastic Resource Provisioning (ERP) and Request
Updating (RU). ERP (e.g., [26] [34]) will buy extra resources
to cope with the burstiness traffic. It is an agile solution
and will not cause a decrease in users’ QoS, but may
be expensive. Specifically, in this example, ERP needs to
upgrade the configuration to type B for both NF1 and NF2.
This way will not involve significant update delay and the
problem of request state consistency, but cost the service
provider an extra 200 USD per month.

RU (e.g., [35] [36]) mainly transfers the requests from
the overloaded NF to another available one to alleviate the
traffic dynamics. It is a free solution but may spend much
time on request updating. Specifically, RU needs to update
1500/600 requests from NF1/NF2 to NF3, and will cost 21
units timespan, which means RU cannot well satisfy the
QoS demand of users. Moreover, RU may not be able to
hold all the traffic under some extreme situations due to the
limited capacity of NFs. Under this circumstance, the service
provider has to abandon or deny some requests.

In practice, since a small delay may not affect the QoS of
users remarkably [37], we try to combine the two methods.
As a result, service providers will spend less money and

still guarantee the QoS. We introduce TRUST, a brand-new
approach that combines these two methods. If TRUST is
adopted in this example, we only need to transfer 600 re-
quests from NF2 to NF3, and upgrade the configuration type
of NF1. Compared with RU, TRUST can finish the updating
process within 10 units timespan and will not cost too much
compared with ERP. This example fully demonstrates the
advantages of TRUST.

C. Problem Formulation of TRUST

This section describes the problem formualtion of TRUST.
In a commercial cloud, the service provider serves the
requests from cloud users and processes the requests in NFs.
As time goes by, load unbalancing occurs among NFs due
to traffic dynamics. At this time, the service provider will
choose to change the configuration type of some NFs or
update the requests. To help the service provider spend less
money on NFs and save time from updating requests, also
for achieving a better QoS of users, we should consider the
following constraints in coping with traffic dynamics.

1) Physical Server Resource Constraint: The total re-
sources used by NFs that are on the same physical server
cannot exceed the whole resources of the physical server.

2) NF Capacity Constraint: The configuration type that an
NF chooses must be able to handle the requests it receives.

3) Update Delay Constraint: t0 represents the update delay
of a single request, which is determined by the system
hardware performance. For example, it takes about 0.5ms for
updating a single request by the test result of [35]. Since the
controller will encapsulate and install a flow entry for each
updated request, the total update delay can be approximately
linear with the number of updated requests [18] [38]. To
assure users’ QoS, the total update delay cannot exceed the
time threshold T , which is determined by user’s QoS demand.
For instance, in a cellular communication environment, T is
set to 150ms [32].

We use the variable xnc ∈ {0, 1} to denote whether NF n
will choose the configuration type c (xnc = 1) or not (xnc =
0). The variable yγn ∈ {0, 1} represents whether the request
γ will be sent to NF n (yγn = 1) or not (yγn = 0). We use a
constant β(γ, n) to denote whether the request γ is assigned
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to NF n before update (β(γ, n) = 0) or not (β(γ, n) = 1).
The formulation is as follows:

min
∑
n∈N

∑
c∈C

m(c) · xnc

S.t.



∑
c∈C x

n
c = 1, ∀n ∈ N∑

n∈N y
γ
n = 1, ∀γ ∈ Γ∑

n∈Ns

∑
c∈C x

n
c · r(c) ≤ R(s), ∀s ∈ S∑

γ∈Γ y
γ
n · f(γ) ≤

∑
c∈C x

n
c · p(c), ∀n ∈ N∑

γ∈Γ

∑
n∈N y

γ
n · β(γ, n) · t0 ≤ T,

xnc , y
γ
n ∈ {0, 1}, ∀n, c, γ

(1)

The first set of equations means that each NF will choose
a configuration type c ∈ C, and the second set of equations
means each request γ will be sent to an NF n ∈ N . The
third set of inequalities denotes the physical server resource
constraint that all the resources allocated to NFs should not
exceed the total resources on the physical server s. The
fourth set of inequalities describes that the traffic load on
each NF should not exceed its capacity, i.e., the NF capacity
constraint. The fifth set of inequalities means that the duration
of updating request should not exceed the time threshold T .
Our objective function is to minimize the total infrastructure
cost, i.e.,

∑
n∈N

∑
c∈C m(c) · xnc .

Theorem 1: TRUST defined in Eq. (1) is an NP-Hard
problem.

Proof: We can prove the NP-hardness by showing that
the bin-packing problem [39] is a special case of TRUST.
Due to limited space, we omit the detailed proof here.

III. ALGORITHM DESCRIPTION

A. Randomized Rounding Algorithm for TRUST

This section presents an approximation algorithm based on
randomized rounding [40] for TRUST.

The first step is to relax Eq. (1) into an LP by replacing
integer constraints with linear constraints. In this way, we
can solve it with a linear program solver (e.g., PuLP [41])
and the solutions are denoted by {x̃nc } and {ỹγn}.

In the second step, we identify which configuration type
each NF should choose and which NF each request should be
scheduled to, i.e., obtain feasible solutions {x̂nc } and {ŷγn}.
Then, we round x̂nc to 1 with probability x̃nc and round ŷγn
to 1 with probability ỹγn. We should note that the choice is
done in an exclusive manner, i.e., for each n, exactly one of
{x̃nc } is set to one; the rest are set to zero. And for each γ,
exactly one of {ỹγn} is set to one; the rest are set to zero.
According to rounded {x̂nc } and {ŷγn}, we can derive a joint
elastic resource provisioning and request updating scheme.
The formal algorithm is shown in Algorithm 1.

B. Performance Analysis

Before we analyze algorithm performance, we introduce
two famous lemmas for approximation performance analysis.

Lemma 2: (Chernoff Bound) Given n independent vari-
ables: x1, x2, ..., xn, where ∀xi ∈ [0, 1]. Let µ = E[

∑n
i=1 xi].

Then, we have Pr[
∑n
i=1 xi ≥ (1 + ε)µ] ≤ e

−ε2µ
2+ε and

Algorithm 1 Randomized Rounding-based Algorithm for
TRUST

1: Step 1: Solving the Relaxed Formulation
2: Construct a linear program by replacing the integral

constraints with xnc and yγn ∈ [0, 1]
3: Obtain the optimal solutions {x̃nc } and {ỹγn}
4: Step 2: Acquire a feasible solution by randomized

rounding
5: for each NF n ∈ N do
6: Choose one x̂nc = 1 with probability x̃nc and the rest

are set 0
7: for each request γ ∈ Γ do
8: Choose onr ŷrn = 1 with probability ỹγn and the rest

are set 0
9: Solve Eq. (1) get the new solution {x̃nc } and {ỹγn}.

10: Step 3: Derive a joint elastic resource provisioning
and request updating scheme according to {x̂nc } and
{ŷγn}

Pr[
∑n
i=1 xi ≤ (1 − ε)µ] ≤ e

−ε2µ
2 where ε is an arbitrarily

positive value.
Lemma 3: (Union Bound) Given an accountable set of n

events: A1, A2, ...An, each event Ai happens with probability
Pr(Ai). Then, Pr(A1 ∪A2 ∪ ... ∪An) ≤

∑n
i=1 Pr(Ai).

Theorem 4: The proposed algorithm can obtain a value
of infrastructure cost close to the optimal infrastructure cost
derived by solving the LP with a high probability.

Proof: We define the infrastructure cost of NF n:
Pn =

∑
c∈C x

n
c · m(c). Then, the total infrastructure cost,

i.e., the objective function can be denoted as:
∑
n∈N Pn.

According to Algorithm 1, we know the infrastructure cost
of NF n derived by LP, i.e., the optimal value is

∑
n∈N P̃n =∑

n∈N
∑
c∈C x̃

n
c · m(c). After the rounding procedure of

algorithm, we acquire the feasible solution x̂nc . Thus, we can
determine the infrastructure cost derived by algorithm, i.e.,
P̂n:

P̂n =

{
m(c), with probability x̃nc
0, otherwise

(2)

So we have E[
∑
n∈N P̂n] =

∑
n∈N

∑
c∈C x̃

n
c · m(c) =∑

n∈N P̃n. Then, we define the highest price of configuration

type is pmax. So we can say E[
∑
n∈N P̂n
|N |·pmax ] ∈ [0, 1], where |N |

is the number of NFs. We should note that for different n,
P̂n is independent from each other. Then, based on Lemma
2, we can conclude that

Pr[

∑
n∈N P̂n

|N | · pmax
≥ (1 + ε)E[

∑
n∈N P̂n

|N | · pmax
]] ≤ e−

ε2

2+εE[
∑
n∈N P̂n
|N|·pmax

]

⇔Pr[
∑
n∈N

P̂n ≥ (1 + ε)
∑
n∈N

P̃n] ≤ e−
ε2

2+ε

∑
n∈N P̃n
|N|·pmax (3)

Eq. (3) means that the infrastructure cost derived by
algorithm, i.e.,

∑
n∈N P̂n will be more than the value derived

by LP, i.e.,
∑
n∈N P̃n with a very low probability. Thus, we

can say the output derived by algorithm, i.e.,
∑
n∈N P̂n is
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close to the optimal solution of LP, i.e.,
∑
n∈N P̃n with a

high probability.

Theorem 5: The algorithm guarantees that the total re-
sources of NFs in server s will not exceed the total resource
of server s by a factor of O(log |S|), where |S| is the number
of NFs.

Proof: We use Rn to denote the resource of NF n
and Rn =

∑
c∈C x

n
c · r(c). After solving the LP, R̃n =∑

c∈C x̃
n
c · r(c). Then, we adopt the rounding procedure

of x̃nc to acquire a feasible solution x̂nc ∈ {0, 1} and R̂n.
Specifically, we round x̂nc to 1 with probability x̃nc . Thus, we
can determine the capacity of NF n derived by algorithm,
i.e., R̂n:

R̂n =

{
r(c), with probability x̃nc
0, otherwise

(4)

So we have
E[R̂n] =

∑
c∈C

x̃nc · r(c) = R̃n (5)

and
E[

∑
n∈Ns

R̂n] =
∑
n∈Ns

∑
c∈C

x̃nc · r(c) ≤ R(s) (6)

Then we define a constant α as follows:
α =

Rmin
rmax

(7)

where Rmin denotes the minimal resource among servers and
rmax denotes the maximum resource among configuration
types.

Combining the definition of α and Eq. (6), we have{
R̂n·α
R(s) ∈ [0, 1]

E[
∑
n∈Ns

R̂n·α
R(s) ] ≤ α

(8)

We should note that for different n, R̂n is independent
from each other. Based on Lemma 2, we have

Pr[
∑
n∈Ns

R̂n · α
R(s)

≥ (1 + ε)α] ≤ e−
ε2·α
2+ε (9)

Now we assume that

Pr[
∑
n∈Ns

R̂n
R(s)

≥ (1 + ε)] ≤ e−
ε2·α
2+ε ≤ 1

|S|k+1
(10)

where k is an arbitrary positive integer. We know that
1

|S|k+1 → 0 when network size grows. The solution to Eq.
(10) is

ε ≥ (k + 1) log |S|+
√

(k + 1)2 log2 |S|+ 8(k + 1)α log |S|
2α

,

⇒ε ≥ (k + 1) log |S|
α

+ 2, |S| ≥ 2 (11)

By applying Lemma 3, we have

Pr[
⋃
s∈S

∑
n∈Ns

R̂n
R(s)

≥ (1 + ε)]

≤
∑
s∈S

Pr[
∑
n∈Ns

R̂n
R(s)

≥ (1 + ε)]

≤|S| · 1

|S|k+1
=

1

|S|k
(12)

Thus, we can conclude that the approximation factor is
ε+ 1 = (k+1) log |S|

α + 3.

Lemma 6: Suppose that C̃n is the optimal value of the
capacity of NF n to the LP while Ĉn is the value associated
with Algorithm 1. Ĉn will be at most less than C̃n by a factor
of (1− ε), where ε is an arbitrarily positive value.

Proof: We use Cn to denote the capacity of NF n and
Cn =

∑
c∈C x

n
c ·p(c). After solving the LP, C̃n =

∑
c∈C x̃

n
c ·

p(c). Then, we adopt the rounding procedure of x̃nc to acquire
a feasible solution x̂nc ∈ {0, 1}. Specifically, we round x̂nc to
1 with probability x̃nc . Thus, we can determine that

Ĉn =

{
p(c), with probability x̃nc
0, otherwise

(13)

So we have

E[Ĉn] =
∑
c∈C

x̃nc · p(c) = C̃n (14)

Clearly, we also have Ĉn
cmax

and E[ Ĉn
cmax

] ∈ [0, 1]. For
different n, Ĉn is independent from each other. Based on
Lemma 2, we have

Pr[
Ĉn
cmax

≤ (1− ε)E[
Ĉn
cmax

]] ≤ e−
ε2

2 E[ Ĉn
cmax

] (15)

Combining Eq. (14), then we have

Pr[Ĉn ≤ (1− ε)C̃n] ≤ e−
ε2

2
C̃n
cmax (16)

Thus, we can conclude that after rounding procedure,
Algorithm 1 can derive a throughput, i.e., Ĉn, will not be
less than (1− ε)C̃n.

Theorem 7: Algorithm 1 can achieve the approximation
factor of O(log |N |) for NF capacity, where |N | is the
number NFs.

Proof: By Lemma 6, we can know that Algorithm 1
will acquire a value of NF capacity Ĉn will not be less than
(1− ε)C̃n. Then, we will show that the total traffic load on
each NF will not exceed C̃n by a factor of O(log |N |).

We use a variable vrn to denote the traffic size of request
r to NF n.

vrn =

{
f(r), with probability ỹrn
0, otherwise

(17)

So we have
E[
∑
r∈Γ

vrn] =
∑
r∈Γ

f(r) · ỹrn ≤
∑
c∈C

x̃nc · p(c) = C̃n (18)

We define:

α2 = min{ cmin
ỹrn · f(r)max

} (19)

Combining Eq. (18) and Eq. (19), we have{
vrn·α2

C̃n
∈ [0, 1]

E[
∑
r∈Γ

vrn·α2

C̃n
] ≤ α2

(20)
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Note that when n is given, for different r, vrn is indepen-
dent from each other. Thus, by adopting Lemma 2, we have

Pr[
∑
r∈Γ

vrnα2

C̃n
≥ (1 + ε′)α2] ≤ e

−ε2·α2
2+ε (21)

Now we assume that
Pr[

∑
r∈Γ

vrn

C̃n
≥ (1 + ε′)] ≤ e

−ε2·α2
2+ε ≤ 1

|N |2
(22)

We know that 1
|N |2 → 0 when the network grows. By

solving Eq. (22), we have the following result:

ε′ ≥
log |N |2 +

√
log2 |N |2 + 8α2 log |N |2

2α2
, n ≥ 2

⇒ε′ ≥ 2 log |N |
α2

+ 2, n ≥ 2 (23)

Then, by applying Lemma 3, we have

Pr[
⋃
n∈N

∑
r∈Γ

vrn

C̃n
≥ (1 + ε′)]

≤
∑
n∈N

Pr[
∑
r∈Γ

vrn

C̃n
≥ (1 + ε′)]

≤|N | · 1

|N |2
=

1

|N |
(24)

Combining Lemma 6, we can conclude that the approxi-
mation factor is

1 + ε′

1− ε
=

1

1− ε
(
2 log |N |
α2

+ 3), (25)

where ε is an arbitrarily positive value.

Theorem 8: Our algorithm can guarantee that the update
time derived by Algorithm 1 will not exceed the time
threshold T by a factor of O(log |Γ|), where |Γ| denotes the
number of requests.

Proof: The proof of Theorem 8 is similar to the proof
of Theorem 5. Due to limited space, we omit the proof.

Approximation Factor: From our analysis, we can make
the following conclusions. First of all, the infrastructure cost
derived by algorithm is close to the optimal value derived
by solving the LP with a high probability. Secondly, the
total capacity of the NFs on the same physical server will
not exceed the total resource of the server by a factor of
O(log |S|), where |S| means the number of servers. Thirdly,
the total request load on each NF will not exceed the capacity
of the NF by a factor of O(log |N |), where |N | is the number
of NFs. Finally, the time threshold for updateing will hardly
be violated by a factor of O(log |Γ|), where |Γ| denotes the
number of requests.

IV. PERFORMANCE EVALUATION

A. Performance Metrics and Benchmarks

Performance Metrics: Since this paper focuses on how to
help service providers spend less money and provide services
to users with high QoS guarantee, we adopt the following
performance metrics in evaluations: (1) the infrastructure
cost; (2) the system throughput; (3) the badput ratio [42];
(4) the update delay; (5) the packet loss ratio and (6) the
flow completion time (FCT).

During a simulation run, we record each NF’s configura-
tion type and calculate the total infrastructure cost that the

service provider needs to pay. Then, we measure the total
load of all the NFs as the throughput from users that the
service provider can serve. Note that not all the traffic from
users can be served due to limited capacity. We define the
amount of traffic which cannot be served by NFs as badput.
We divide badput by the total traffic amount from users as
the badput ratio [42]. Finally, we calculate the update delay
according to the number of rules that the controller needs to
generate. During a system implementation run, we measure
the packet loss ratio and the FCT using the command iPerf3.

Benchmarks: We compare TRUST with three state-of-
the-art benchmarks dealing with traffic dynamics in clouds.
The first benchmark is the Elastic Resource Provisioning
Reactive Mode (ERP-RM) algorithm [26], which is widely
adopted in commercial clouds like Amazon [43], Scalr [44]
and Rightscale [45]. ERP-RM sets the capacity threshold
for each NF and automatically selects the configuration
type with sufficient resources. The second benchmark is
the Robustness-aware Real-time Request Updating Algorithm
(R3-UA) [35]. R3-UA adopts the rounding method to acquire
the real-time request updating scheme in order to achieve
load-balancing among NFs. This benchmark also has update
delay assurance by limiting the number of updating requests.
The third benchmark is the Request Updating-Shortest Job
First (RU-SJF) algorithm [36], which is highly efficient and
also widely adopted in clouds. RU-SJF always chooses the
NF with the least burden for the request with the least traffic
demand. R3-UA and RU-SJF are both pure request updating
methods and do not involve modifying configuration type.
Note that R3-UA considers the update delay constraint, while
RU-SJF does not.

B. Simulation Evaluation

This section presents simulation experiments to evaluate
performance of our proposed algorithm and benchmarks.

1) Simulation Settings: We conduct simulation experi-
ments to compare TRUST with three benchmarks in two
practical topologies. The first one is a small-scale NSF
network topology, which contains 16 NFs [46]. The second
topology is from Google cluster-data [47], which contains
320 NFs. We implement our tests with a set of requests from
Google cluster-data [47]. Each request size is set from 500
to 1000 Kbps. The configuration type is set according to
Google Cloud Platform [27]. A physical server can provide
100 core CPU and 375 GB RAM for NFs. The configuration
types are shown in Table III. According to [35], the average
update delay of a single request is set to 0.5ms.

We simulate the traffic dynamics according to [48]. The
requests are divided into two parts: primitive requests and
newly increased requests. Specifically, there are mainly two
kinds of traffic dynamics. The first one is called slight
dynamic, where newly increased requests account for 20% of
all the requests. The other one is called magnitude dynamic,
where newly increased requests account for 50% of all the
requests. During traffic dynamic, 20% of NFs will receive
newly increased requests and 20% of NFs will reduce about
50% of primitive requests. We conduct simulation experi-
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Fig. 1: Cost vs Number of Requests in the small topology

 0

 50

 100

 150

 200

 250

 1  2  3  4  5  6  7  8  9  10  11  12

C
o
st

 (
U

S
D

/h
o
u
r)

No. of Requests (x10
4
)

ERP-RM
TRUST
R

3
-UA

RU-SJF

(a) for the slight dynamic

 0

 50

 100

 150

 200

 250

 1  2  3  4  5  6  7  8  9  10  11  12

C
o
st

 (
U

S
D

/h
o
u
r)

No. of Requests (x10
4
)

ERP-RM
TRUST
R

3
-UA

RU-SJF

(b) for the magnitude dynamic

Fig. 2: Cost vs Number of Requests in the large topology
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Fig. 3: Cost vs. Update Delay Constraint in the small topology
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Fig. 4: Cost vs. Update Delay Constraint in the large topology

Type Resource Price
($/hour)

Capacity
(Gbps)CPU (cores) RAM (G)

1 1 3.75 0.07 1
2 2 7.5 0.14 2
3 4 15 0.28 4
4 8 30 0.57 8
5 16 60 1.13 16
6 32 120 2.26 32
7 64 240 3.40 64

TABLE III: Configuration types according to Google Cloud Plat-
form [27].

ments under the two kinds of traffic dynamics. Besides, we
generate 6×103/6×104 requests for the small/large topology
by default. The update delay constraint is set to 0.2/2s for
the small/large topology by default.

2) Performance Comparison: We run five groups of
experiments to check the effectiveness of our algorithm. The
first group of experiments shows the infrastructure costs by
varying the number of requests in clouds. The results are
shown in Figs. 1-2. We can learn from the figures that the
costs of four algorithms increase when the number of requests
grows. The figures show that our proposed algorithm always
acquires a much lower cost than ERP-RM and a slightly
higher cost than R3-UA and RU-SJF. For example, in Fig.
1(a), given 8 × 103 requests in the cloud, the cost results
of four algorithms are 6, 3.4, 2.83 and 2.83 USD/hour,
corresponding to ERP-RM, TRUST, R3-UA and RU-SJF,
respectively. TRUST reduces the cost by 43.96% compared
with ERP-RM while only increases the cost by 13.79%
compared with both R3-UA and RU-SJF. Since R3-UA and
RU-SJF will not buy any more extra resources when facing
traffic dynamics, it is natural that the cost results will be
lower than those of ERP-RM and TRUST. As a result,
the QoS aspects (e.g., throughput and update delay) will
decrease significantly, which will be clarified hereafter. In
Fig. 2(a), when there are 9×104 requests, the cost results of
four algorithms are 171.42, 125.1, 114 and 114 USD/hour,

corresponding to ERP-RM, TRUST, R3-UA and RU-SJF.
TRUST reduces the cost by 27% compared with ERP-RM.

The second group of experiments shows the infrastructure
costs by varying the update delay constraint and the results
are shown in Figs. 3-4. It can be concluded from the figures
that, given a larger update delay threshold, TRUST will
acquire a solution with less cost. Also, since ERP-RM only
executes elastic resource provisioning, and R3-UA/RU-SJF
only executes updating requests, their cost results are steady.
For instance, in Fig. 3(a), the cost results of ERP-RM, R3-
UA and RU-SJF are 4.46, 2.8 and 2.8 USD/hour, respectively.
Obviously, the cost results of three benchmarks will not be
affected by the update delay constraint. When the update
delay constraint is set as 0.05s, TRUST is only able to
transfer about tens of requests. The cost result of TRUST
is nearly the same as that of ERP-RM. However, when given
sufficient time, like 0.2s, the cost result of TRUST is only
2.95 USD/hour. TRUST reduces the cost by 33.9% compared
with ERP-RM and increases the cost only by about 5.4%
compared with both R3-UA and RU-SJF. The figures also
imply that when facing the magnitude dynamics, pure request
updating methods will not be able to solve the ultimate
problem, i.e., insufficient resources to deal with the sudden
increasing number of requests. For instance, in Fig. 4(b),
even if TRUST has enough time to update requests, the cost
is still a bit higher than those of R3-UA and RU-SJF. This is
because extra resources are necessary, and the consequence of
not upgrading the configuration type is to decline redundant
requests, resulting in a bad users’ QoS.

The third group of experiments show the throuhputs by
varying the number of requests in clouds and the results are
shown in Figs. 5-6. We can learn from the figures that the
throughput results increase as the number of requests grows.
By Fig. 5(b), given 12 × 103 requests, TRUST improves
throughput by 62.2% and 25.3% compared with R3-UA and
RU-SJF, respectively. In Fig. 6(b), when there are 11 × 104

requests, TRUST improves throughput by 93.2% and 49.3%
compared with R3-UA and RU-SJF, respectively. Since the
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Fig. 5: Throughput vs. Number of Requests in the small topology
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Fig. 6: Throughput vs. Number of Requests in the large topology
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Fig. 7: Badput Ratio vs. Number of Requests in the small topology
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Fig. 8: Badput Ratio vs. Number of Requests in the large topology
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Fig. 9: Update Delay vs. Number of Requests in the small topology
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Fig. 10: Update Delay vs. Number of Requests in the large topology

two methods are only updating requests without buying extra
resources, consequently, many requests have to be abandoned
due to limited processing capacity on NFs. Note that since
ERP-RM and TRUST both tend to buy extra resources when
facing dynamics, the throughput results are much better than
those of R3-UA and RU-SJF. However, under some extreme
situations, due to the limited resources of physical servers,
ERP-RM may not be able to hold all the traffic from users.
As comparison, TRUST can balance the load among the
servers by updating the requests. As shown in Figs. 6(a)-
6(b), when there are 12 × 104 requests under two kinds of
traffic dynamics, the throughput results of ERP-RM are a bit
lower than those of TRUST.

The fourth set of experiments presents the badput ratio of
four algorithms. We can conclude that ERP-RM and TRUST
can always achieve the least badput ratio compared with R3-
UA and RU-SJF. We can observe that the function curves
of R3-UA and RU-SJF fluctuate as the number of requests
increases. For instance, by Fig. 7(b), the badput ratio of R3-
UA decreases when the number of requests ranges from 3×
103 to 7 × 103, and increases when the number of requests
is between 8 × 103 to 12 × 103, since when the number of
requests is ranging from 3×103 to 7×103, the configuration
types of NFs are being upgraded. Consequently, as shown in
Fig. 1(b), the cost result of R3-UA is increasing. In general,
TRUST decreases badput by 43% and 28.7% compared with
R3-UA and RU-SJF, respectively, in the large topology.

The fifth set of experiments shows the update delay of

three algorithms. Since ERP-RM does not involve the updat-
ing procedure, we only compare TRUST with R3-UA and
RU-SJF. We learn from Figs. 9-10 that the update delay of
RU-SJF will significantly increases while TRUST and R3-
UA limit the update delay within a small range. For instance,
by Fig. 10(a), when there are 9× 104 requests, TRUST can
reduce update delay by 78.1% compared with RU-SJF. In
Fig. 10(b), when there are 10 × 104 requests, TRUST can
reduce update delay by 91.5% compared with RU-SJF.

From these simulation results, we can draw some conclu-
sions. Firstly, compared with ERP-RM, TRUST can signif-
icantly reduce the cost by 35.5%/31.3% on average in the
small/large topology by Figs. 1-2. At the same time, TRUST
only takes a few more seconds of update delay, and it can
still satisfy the QoS demand of users. Secondly, compared
with R3-UA, TRUST has a much better performance on
throughput and significantly reduces the badput ratio. From
Figs. 5-6, we know that TRUST improves the throughput
by 44.9%/88.9% in the small/large topology on average
compared with R3-UA. Then, Figs. 7-8 show that TRUST
can reduce the badput ratio by 29.1%/43% in the small/large
topology compared with R3-UA. Meanwhile, TRUST only
increases the cost by about 13.79%/8.8% in the small/large
topology compared with R3-UA. Finally, compared with RU-
SJF, TRUST can greatly reduce the update delay. Figs. 9-10
show that in general, TRUST can reduce 81.8%/86% update
delay compared with RU-SJF in the small/large topology.
Also, TRUST can improve the throughput by 15%-44.8% and
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Fig. 11: Cost vs. No. of Flows
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reduce the badput ratio by 13.9%-28.7% with cost increased
only by 8.8%-13.79% compared with RU-SJF.

C. Testbed Evaluation

1) Testbed Settings: To further evaluate our proposed
algorithm, we need a universal platform to realize our small-
scale testbed system, which is supposed be similar to the
cloud environment deployed in the real-world. Thus, our
choice is OpenStack [49], the most advanced and widely
used cloud infrastructure software, to implement the system.
Specifically, we adopt the latest version of OpenStack called
Victoria [49] to estimate our algorithm. By OpenStack’s
VM service Nova, we can customize different flavors, i.e.,
configuration types, according to Google Cloud Platform
[27], which is shown in Table III.

Specifically, our testbed generates 10 instances as NFs, all
with Ubuntu 18.04 OS. The NFs are all initialized as type
1 in Table III. We first run SNAT (Static Network Address
Translation) on 10 NFs by rewriting the iptables rules to
translate the private address into a public address for online
requirements. Then, we set 800 requests and 0.1s update
delay constraint by default. We implement our tests with
a set of requests from Google cluster-data [47]. We mainly
consider the magnitude dynamic in our testbed. During traffic
dynamic, 20% of NFs will receive newly increased requests,
and 20% of NFs will reduce about 50% of primitive requests.

2) Performance Comparison: This set of testbed experi-
ments compares the performance of ERP-RM, TRUST, R3-
UA and RU-SJF and the results are shown in Figs. 11-14. We
record each NF’s configuration type and calculate the total
infrastructure cost and the results are shown in Fig. 11. We
observe that TRUST can reduce the cost by 37.8% compared
with ERP-RM. Since TRUST takes the advantages of request
updating, the purchased resources of TRUST are much fewer
than that of ERP-RM.

We demonstrate the costs by varying the update delay
constraint in Fig. 12. It can be inferred from the figure that
the cost results of TRUST will decrease as the update delay

grows. For example, when the update delay is 0, the cost
result of TRUST is almost the same as that of ERP-RM since
TRUST is unable to transfer any requests. Given enough time,
e.g., 0.2s, we find a significant reduction in cost of TRUST.
TRUST reduces the cost by 50% compared with ERP-RM.

By Fig. 13, we present the average packet loss ratio by
varying the number of requests. Overall, the packet loss ratio
results of R3-UA and RU-SJF increase as the number of
requests grows. When the number of requests is 0.8×103, the
packet loss ratio results of R3-UA and RU-SJF decrease since
the configuration types of NFs are upgraded significantly at
that time. When there are 0.6 × 103 requests, TRUST can
reduce 91.7% and 90.3% packet loss ratio compared with R3-
UA and RU-SJF, respectively. ERP-RM and TRUST always
keep a very low packet loss ratio because both two methods
tend to buy enough resources to handle requests.

Fig. 14 shows the average FCT by varying the number of
requests. The FCT of a single request mainly depends on its
traffic size and link bandwidth. If the request is transferred,
the time for updating rules is also included. The FCT results
of ERP-RM are always the lowest because ERP-RM does not
involve updating the requests. When given 1.2×103 requests
in the cloud, TRUST can reduce the average FCT by 20.4%
compared with RU-SJF and only increase the average FCT
by about 4.6% compared with ERP-RM. The reason why
TRUST and R3-UA can achieve a much lower FCT than that
of RU-SJF, is that TRUST and R3-UA can limit the number
of updating requests.

From the above experimental results, we can draw some
conclusions. Firstly, TRUST reduces the cost by 37.8% and
only increases the average FCT by 4.6% compared with ERP-
RM. Secondly, compared with R3-UA and RU-SJF, TRUST
can acquire a much better packet loss ratio. TRUST reduces
the average packet loss ratio by 91.7% and 90.3% compared
with R3-UA and RU-SJF, respectively, while it only increases
the cost by 23.6% compared with both R3-UA and RU-SJF
on average. Finally, TRUST can reduce the average FCT by
20.4% compared with RU-SJF. These experimental results
show the high efficiency and cost-saving of TRUST.

V. CONCLUSION

In this paper, we focus on the problem of real-time request
updating with elastic resource provisioning in clouds. To
solve the problem, we design an efficient algorithm with
bounded approximation factors based on randomzied round-
ing. Extensive simulation and testbed experiments results
show the high efficiency of our proposed algorithm.

ACKNOWLEDGEMENT

The corresponding authors of this paper are Gongming
Zhao and Hongli Xu. This article was supported in part by the
National Science Foundation of China (NSFC) under Grants
61822210, 62102392 and 62132019; and in part by the
National Science Foundation of Jiangsu Province under Grant
BK20210121; and in part by Anhui Initiative in Quantum
Information Technologies under Grant AHY150300.



10

REFERENCES

[1] M. M. Sadeeq, N. M. Abdulkareem, S. R. Zeebaree, D. M. Ahmed,
A. S. Sami, and R. R. Zebari, “Iot and cloud computing issues,
challenges and opportunities: A review,” Qubahan Academic Journal,
vol. 1, no. 2, pp. 1–7, 2021.

[2] I. M. Ibrahim et al., “Task scheduling algorithms in cloud computing:
A review,” Turkish Journal of Computer and Mathematics Education
(TURCOMAT), vol. 12, no. 4, pp. 1041–1053, 2021.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[4] A. Brazhuk, “Threat modeling of cloud systems with ontological
security pattern catalog,” International Journal of Open Information
Technologies, vol. 9, no. 5, pp. 36–41, 2021.

[5] C. Wu, V. Sreekanti, and J. M. Hellerstein, “Autoscaling tiered cloud
storage in anna,” The VLDB Journal, vol. 30, no. 1, pp. 25–43, 2021.

[6] Y. Zhang, G. Lin, H. Gu, F. Zhuang, and G. Wei, “Multi-copy dynamic
cloud data auditing model based on imb tree,” Enterprise Information
Systems, vol. 15, no. 2, pp. 248–269, 2021.

[7] Y. Zhou, L. Ruan, L. Xiao, and R. Liu, “A method for load balancing
based on software defined network,” Advanced Science and Technology
Letters, vol. 45, pp. 43–48, 2014.

[8] A. Beloglazov and R. Buyya, “Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality
of service constraints,” IEEE transactions on parallel and distributed
systems, vol. 24, no. 7, pp. 1366–1379, 2012.

[9] S. Bharti and K. K. Pattanaik, “Dynamic distributed flow scheduling
with load balancing for data center networks,” Procedia Computer
Science, vol. 19, pp. 124–130, 2013.

[10] Z. Guo, Y. Xu, Y.-F. Liu, S. Liu, H. J. Chao, Z.-L. Zhang, and
Y. Xia, “Aggreflow: Achieving power efficiency, load balancing, and
quality of service in data center networks,” IEEE/ACM Transactions
on Networking, 2020.

[11] M. H. Ho, F. Hnaien, and F. Dugardin, “Electricity cost minimisation
for optimal makespan solution in flow shop scheduling under time-
of-use tariffs,” International journal of production research, vol. 59,
no. 4, pp. 1041–1067, 2021.

[12] P. Wang, Y. Lei, P. R. Agbedanu, and Z. Zhang, “Makespan-driven
workflow scheduling in clouds using immune-based pso algorithm,”
IEEE Access, vol. 8, pp. 29 281–29 290, 2020.

[13] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95-international conference on neural networks, vol. 4.
IEEE, 1995, pp. 1942–1948.

[14] T. Hoang, A. A. Yavuz, and J. G. Merchan, “A secure searchable
encryption framework for privacy-critical cloud storage services,” IEEE
Transactions on Services Computing, 2019.

[15] A. Greenberg, “Sdn for the cloud,” in Keynote in the 2015 ACM
Conference on Special Interest Group on Data Communication, 2015.

[16] P. Wang, H. Xu, L. Huang, C. Qian, S. Wang, and Y. Sun, “Minimizing
controller response time through flow redirecting in sdns,” IEEE/ACM
Transactions on Networking, vol. 26, no. 1, pp. 562–575, 2018.

[17] G. Zhao, L. Huang, Z. Yu, H. Xu, and P. Wang, “On the effect of flow
table size and controller capacity on sdn network throughput,” in 2017
IEEE International Conference on Communications (ICC), pp. 1–6.

[18] H. Xu, Z. Yu, X.-Y. Li, C. Qian, L. Huang, and T. Jung, “Real-time
update with joint optimization of route selection and update scheduling
for sdns,” in 2016 IEEE 24th International Conference on Network
Protocols (ICNP). IEEE, 2016, pp. 1–10.

[19] K. Kannan and S. Banerjee, “Compact tcam: Flow entry compaction in
tcam for power aware sdn,” in International conference on distributed
computing and networking. Springer, 2013, pp. 439–444.

[20] B.-Y. Choi, J. Park, and Z.-L. Zhang, “Adaptive packet sampling for
flow volume measurement,” 2002.

[21] W. J. A. Silva, “Avoiding inconsistency in openflow stateful ap-
plications caused by multiple flow requests,” in 2018 International
Conference on Computing, Networking and Communications (ICNC).
IEEE, 2018, pp. 548–553.

[22] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource
provisioning cost in cloud computing,” IEEE Transactions on Services
Computing, vol. 5, no. 2, pp. 164–177, 2012.

[23] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elasticity
provisioning system for the cloud,” in 2011 31st International Confer-
ence on Distributed Computing Systems. IEEE, 2011, pp. 559–570.

[24] M. Nardelli, C. Hochreiner, and S. Schulte, “Elastic provisioning of
virtual machines for container deployment,” in Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering
Companion, 2017, pp. 5–10.

[25] A. da Silva Dias, L. H. V. Nakamura, J. C. Estrella, R. H. C. Santana,
and M. J. Santana, “Providing iaas resources automatically through
prediction and monitoring approaches,” in 2014 IEEE Symposium on
Computers and Communications (ISCC), 2014, pp. 1–7.

[26] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity
in cloud computing: state of the art and research challenges,” IEEE
Transactions on Services Computing, vol. 11, no. 2, pp. 430–447, 2017.

[27] Google cloud platform. [Online]. Available: https://cloud.google.com/
compute/vm-instance-pricing

[28] A. Ashraf, B. Byholm, and I. Porres, “Cramp: Cost-efficient resource
allocation for multiple web applications with proactive scaling,” in 4th
IEEE International Conference on Cloud Computing Technology and
Science Proceedings. IEEE, 2012, pp. 581–586.

[29] P. Marshall, K. Keahey, and T. Freeman, “Elastic site: Using clouds
to elastically extend site resources,” in 2010 10th IEEE/ACM Interna-
tional Conference on Cluster, Cloud and Grid Computing, pp. 43–52.

[30] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: elastic
resource scaling for multi-tenant cloud systems,” in Proceedings of
the 2nd ACM Symposium on Cloud Computing, 2011, pp. 1–14.

[31] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in 15th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI}
18), 2018, pp. 299–312.

[32] M. Karzand, D. J. Leith, J. Cloud, and M. Medard, “Design of fec for
low delay in 5g,” IEEE Journal on Selected Areas in Communications,
vol. 35, no. 8, pp. 1783–1793, 2017.

[33] H. Xu, Z. Yu, X.-Y. Li, L. Huang, C. Qian, and T. Jung, “Joint
route selection and update scheduling for low-latency update in sdns,”
IEEE/ACM Transactions on Networking, vol. 25, no. 5, pp. 3073–3087,
2017.

[34] S. M.-K. Gueye, N. De Palma, É. Rutten, A. Tchana, and N. Berthier,
“Coordinating self-sizing and self-repair managers for multi-tier sys-
tems,” Future Generation Computer Systems, vol. 35, pp. 14–26, 2014.

[35] H. Tu, G. Zhao, H. Xu, Y. Zhao, and Y. Zhai, “Robustness-aware real-
time sfc routing update in multi-tenant clouds,” in 2021 IEEE 29nd
International Symposium of Quality of Service (IWQoS). IEEE, 2021.

[36] M. Nosrati, R. Karimi, and M. Hariri, “Task scheduling algorithms
introduction,” World Applied Programming, vol. 2, no. 6, pp. 394–398,
2017.

[37] W. Yu, L. Musavian, and Q. Ni, “Link-layer capacity of noma under
statistical delay qos guarantees,” IEEE Transactions on Communica-
tions, vol. 66, no. 10, pp. 4907–4922, 2018.

[38] X. Wen, B. Yang, Y. Chen, L. E. Li, K. Bu, P. Zheng, Y. Yang, and
C. Hu, “Ruletris: Minimizing rule update latency for tcam-based sdn
switches,” in 2016 IEEE 36th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2016, pp. 179–188.

[39] S. Martello and P. Toth, “Bin-packing problem,” Knapsack problems:
Algorithms and computer implementations, pp. 221–245, 1990.

[40] P. Raghavan and C. D. Tompson, “Randomized rounding: a technique
for provably good algorithms and algorithmic proofs,” Combinatorica,
vol. 7, no. 4, pp. 365–374, 1987.

[41] Pulp. [Online]. Available: https://pypi.org/project/PuLP/
[42] V. Apte, “” what did i learn in performance analysis last year?” teach-

ing queuing theory for long-term retention,” in Companion of the 2019
ACM/SPEC International Conference on Performance Engineering,
2019, pp. 71–77.

[43] Amazon. [Online]. Available: https://aws.amazon.com
[44] Scalr. [Online]. Available: https://www.scalr.com
[45] Rightscale. [Online]. Available: https://www.rightscale.com
[46] G. Sun, Z. Chen, H. Yu, X. Du, and M. Guizani, “Online parallelized

service function chain orchestration in data center networks,” IEEE
Access, vol. 7, pp. 100 147–100 161, 2019.

[47] Google cluster data. [Online]. Available: https://www.github.com/
google/cluster-data

[48] A. Ali-Eldin, O. Seleznjev, S. Sjöstedt-de Luna, J. Tordsson,
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